AD=-A092 935

UNCLASSIFIED

SCIENCE APPLICATIONS INC ENGLEWOOD CO

THE PROCESSES INVOLVED IN DESIGNING SOFTWARE. (U}

AUG 80 M E ATWOODs R JEFFRIESs A A TURNER
SAI-80=110=DEN

F/6 9/2
NO0O14=78=C=0165
NL

ADA092935

-

BOC FiLe copd

s

LEVEL

[

THE PROCESSES INVOLVED

IN DESIGNING SOFTWARE

i

OICCIIONS
APNC%Rpoacleo

2

<\
O\,ii’:@ P
c

S

T e .

— -

THE PROCESSES INVOLVED

IN DESIGNING SOFTWARE

Technical Report \C
SAI-80-110-DEN O

August 1980

Robin Jeffries < ./ G
Althea 7. Turner “
Peter G. Polson
University of Colorado

Michael L. Atwood
Science Applications, Inc.

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research
Programs, Psychological Sciences Division, Office of Naval Research,
under Contract No. N00014-78-C-0165, Contract Authority Identification
Number, NR157-414.

Approved for public release; distribution unlimited.

4

l Science Applications, Inc.
40 Denver Technologicai Center West, 7935 East Prentice Avenue, Englewood, Colorado 80111, 303/773-6900
Other SAI Offices: Albuquerque. Ann Arbor, Arlington, Atlanta, Boston, Chicago, Hunisville, Le Jolla, Los Angeles, McLesn, Palo Alto, Sents Barbara, Sunnyvale, and Tucson.

A Ny

[RSRUETIE PR

AR il
R

L mp e ey -
e, e St e — A me SR ¢

.
—

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When DmuLEnlered)‘

. READ INSTRUCTIONS/
1. REPORT NUMBER 2. GOVYT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
—
J)-A 032, 1945
4. TITLE (and Subtitle) L 5. TYPE € OF REPORT &-PERIQD COVERED

6£ﬁ The Processes Invo]ved in Designing Software, ;’ ?;Techn1ca] ?epcrt,é ,/

) N] s PERFGRMING 036G, REPORT NUMBER

(l 1 SAI-80-11Q-DEN ~ -

7. AUTH - ---—-——-—-'-——.m_.‘_..-‘ B, CONTRACT QR GRANI_ NUMBER(s)
, ichael E./Atwooc 7 Robin/Jeffries / /;

QKA] thea A./Turnery:and Petef' o son NOP@14-78-C-#165

 EXR CONTROLLING OFFICE NAME AND ADDRESS

‘____Azlingign VA 22217 DN
14. MONITORING AGENCY NAME & ADDRESS(IT different from Controlling Office) | 15. SECURITY CLASS. (of this report)

[
9. PERFORMING ORGANIZ;;ION NAME AND ADDR/ESS 10. PROGRAM ELEMENT. PROJECT, TASK
A & WORK UNIT NUMBERS
Science Applications, Inc. /,J 15 N_RR, 042-06
7935 E. Prentice Avenue v of 270602 ; NR157-414
oad, CO 80111 Z =

12, REP‘UFT DATE .

Personnel & Training Research Programs f?i) ,AquSt 1980
Office of Naval Research lj'”/ Y 3. NUMBER OF PAGES

7) ;,/3/‘/ s /)/ ‘ Unclassified
LA SR Y AN '
4 £ . t5a. OECLASSIFICATION/ DOWNGRADING
; SCHEDUL

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Problem solving, planning, computer programming

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

A design task involves a complex set of processes. Starting from a global
statement of the problem, a designer must develop a precise plan for a
solution that can be realized in some concrete way. Software design, which
is investigated in this paper, is the process of translating a set of task N
requirements into a structural description of a computer program that will ,
perform the task. Through experience, designers acquire knowledge

concerning the overall structure of a good design and of the processes {cont.)

y

FORM o £ A e .
DD | an 73 1473 EOITION OF 1NOV 6515 0BSOLETE Unclassified . ,-"4{_’ Y d%

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- of generating one. Using this knowledge, they direct their actions to
insure that their designs will satisfy these constraints. We call this
abstract knowledge about designs and design proce

fses, alonjy with 1 set
of procedures which implement these processes, a "design schema"“. This
paper describes the design schema of experienced software designers and
illustrates its operation by considering thinking-aloud protocols
collected from both expert and novice designers._

e et g
e s

s A AT W

hat'd

Unclassified
. SECURITY CLASSIFICATION OF Tu:e PAGE(When Date Entered)
f

T T R

e e e

i ——

ey Ty W T m T
Y J T, AP

.
Rad
oy

T W

o

THE PROCESSES INVOLVED IN DESIGNING SOFTWARE

Robin Jeffries, Althea A. Turner,
Peter G. Polson
University of Colorado
and
Michael E, Atwood
Science Applications, Inc., Denver

The task of design involves a complex set of processes. Starting from a
global statement of a problem, a designer must develop a precise plan for a
solution that wili be realized in some concrete way, e.g., as B bullding or as
a computer program. Potential solutions are constralned by the need to
eventually map this pian Into a real-world Instantlation. For anything more
than the most artificial examples, design tasks are too complex to be solved
directiy. Thus, an Important facet of designing Is decomposing a problem into
more manageable subunits. Design of computer systems, software design, Is the
particular design task to be focused on In this paper.

Software design is the process of transiating a set of task requirements
(functional specifications) Into a structured description of a compuier
program that will perform the task., There are three major elements of this
description. First, the speciflcations are decomposed into a collection of
modules, each of which satisfles part of the problem requirements. This Is
often referred to as a modular decompositlion. Second, the designer must
specify the relationshlps and Interactlons among the modules. This Includes

the control structures, which indicate the order in which modules are

activated and the conditions under which they are used. Flnally, a design
4 , fczw c.ce1:a1>
4] LR L] [=B S I]
- < u mEo—n—c,g
‘m Lod e an o
L] -3 b
e e e b oW _w
¢ 99T S oA Q) b
mo OB e 3w o
o P D O =
1 T ow *0 fe
2,58 |8~ "§
[}
Ll
g8l
"
‘g‘ Qo

includes the data structures Involved In the solution. One can think of the

original goai-oriented specifications as defining the propertles that the
solution must have., The design Identifies the modules that can satisfy these
properties. How these modules are to be Implemented Is a programming task,
which follows the design task.

This paper presents a theory of the global processes that experts use to
control the development of a software design. After a review of some relevant
I 1terature, the theory is described in detall. Thinking aloud protocols
col lected from both expert and novice designers on a moderately complex
problem provide evidence for these theoretical ideas. Finally, we speculate

on how such processes might be learned.

RESEARCH ON DESIGN AND PLANNING
While there has been | ittle research which focuses directly on problem
solving processes In software design, there are a number of research areas
which are perlipheral ly related. The first of these, formal software design
methodologies, Is Indicative of the guidel ines which experts In the field
propose to structure the task of designing. The second area, automatic
programming, provides a detalled analysis of the task from an artificlal

Intelligence viewpoint, Finally, research on planning and design gives

Insight Into planning processes which may be general across domains.

lh e s bmamea e e e abtedie

LT SO ——

o ——

~

- -——
s (e =S e e > e ————— & M W~ o 4 et

ey e~y -

e Vo -~

hly ¢

Software Design Methodoiogies

There are two reasons for considering the professional |iterature in this
field. A reasonable model of performance In any domain ought to relate to
accepted standards of good practice In that domain (Kintsch, 1980). These
formal ized methods were written by experts in the area ftrying to convey to
others the procedures they use to perform the task. In addition, most expert
designers are familiar with this literature and may incorporate facets of
these methodologies into their designs.,

Software design involves generating a modular decomposition of a problem
that satisfles the requirements described in Its specifications. Design
mcthods provide different bases for performing modular decompositions. There
are two prevalling views In the |iterature as to what this basis should be,
Both positions prescribe problem reduction approaches to the design process.
One focuses on data structures and the other on data flow. The various
methodologlies differ In the nature and specificity of the problem reduction or
decomposition operators and of the evaluation functions for determinling the
adequacy of alternative decomposlitions.

With the data-structure oriented approaches (e.g., Jackson, 1975;
Warnfer, 1974), a designer begins by specifying the Input and output data
structures according to certain guidel ines., A modular decomposition of a
problem is identifled by deriving the mapping between the input and output
data structures. Because such methods Involve the derlvation of a single
"correct" decomposition, there is no need for evaluation criteria or the

comparison of alternative decompositions.

—— - _—
P P B e L e oo e v —

p e -y W -

" —

Data-flow oriented approaches (Yourdon and Constantine, 1975; Myers,
1975) are a collectlion of guidelines for identifying trial decompositions of a
problem. Thus, these methods are more subjective, allowing a designer to
exercise more judgment. As a result, numerous heuristics for evaluating
potentlal decompositions are used with these methods. Examples of such
evaluation guldel ines Include: maxlimizing the Independence and coheslon of
Individual modules, providing a simple (as opposed to general) solution to tne
current subproblem, etc. These guidel Ines control the evaluation of possible
solutions to a design problem and the generation of new alternative deslgns.

Most formal software design methodologies require that the design proceed
through several lterations. FEach Iteration Is a representation of the problem
at a more detalled level. That Is, the initial decomposition Is a schematic
description of the solution. This becomes more detalled in the subsequent
iterations. In general, this mode of decomposing the problem leads to a top-
down, breadth-first expansion of a deslgn.

There are competing views that prescribe different modes of expansion.
Some of these are characterized by such terms as "bottom-up", "mlddle-out", or
"inslde-out" (Boehm, 1975), Such positions have been developed In response to
what some Individuals feel are unsatisfactory properties of a top-down
expansion, There are problems In which It is necessary to understand certain
crucial lower~level functions in order to identify high [evel constralnts on
the design. These alternative modes of expansion may be used by a designer In
problems for which an Initial decomposition Is difficult to derive., There are

undoubtedly problems for which each of these methodologies is particularly

ANy

- ————

C T T s

ep e -y
A s Wt e e et ———— * Vs ST O e o L e e

—

sulted. However, the formai |iterature on soffware design lacks a mappling

between types of problems and the appropriate designh methodology.

Automatic Programming Systems

Another source of information about the task of software design comes
from automatic programming systems. The term "automatic progiramming" has been
used to refer to activities ranging from the deslign and development of
algebralc compllers to systems that can write a program from Information given
In the form of goal-oriented specificatlons (Blermann, 1976; Heldorn, 1976).
The latter represent attempts to specify the procedures of software design in
a mechanizable form.

Simon's (1963, 1972) Heuristlc Compiler was one of the earliest proposals
for a programming system that generated code from abstract specifications.
This program's task was to generate IPL-V code for subroutines that were
components of some larger program. |t was implicitly assumed that the
original specifications had been decomposed intoc detailed functional
descriptions for a collection of routines that would make up the complete
program.

The definitions of routines to be generated by the Heuristic Compiler
could take one of two forms, with each form being handled by a separate
special compiler. The first form involved a before and after description of
the states of certaln cells in the IPL system. The specification described the
inputs and outputs of a routine. The state description compliler's task was to

derive the sequence of IPL instructions that brought about that

transformation. The other form of definitions was In terms of Imperative

- -— - -
R S AP _.{...._

. - er ——— e W
N e e ———-

o W

'
i

statements describing the function to be performed by a glven subroutine, J
which was handled by the functlon compiler, Both special lzed compilers used {
suitably general ized forms of means-ends analysis to generate sequences of IPL
instructlons that would meet the input speziflcations.

One branch of current research on autamatic programming can be 'siewed as 1
attempts to general 1ze the [deas that were originally contained In the state ?

description compiler. Biermann (1976) describes several automatic programming

systems that derive programs from examples of Input-output behavior for a
routine or fram formal descriptlons of inputs and outputs. Note that the date-
structure oriented software design methodologles discussed above resemble
these systems In their focus on deriving detalled actions from inputs and
outputs.

Other automatic programming systems have been developed that generate
routines from information supplied through a natural language dialogue with
the user (Heldorn, 1976). These efforts can be viewed as general izations of
the functlon compiler. Such systems consist of four components (Green, 1977;
Heldorn, 1976; Balzer, 1973). First, the system acquires a description of the
problem to be solved, frequently via Interactions with a relatively nalve
user. Second, this information is synthesized into a coherent description of
the program to be written (Green, 1977), This description is then verified,
and additional information, if necessary, is acqulred through further
interactions with the user (Balzer, Goldman, and Wile, 1977). Finally, the
refined description Is used as input to a subsystem that synthesizes the

program In the high level language, making declslons about data structures,

algorithms, and contro! structures. Much of the current work In automatic
programming focuses on the last of these components.

Balzer and his col leagues have considered the task of transforming an
informal natura! language specification of a program into a formal description
of a design. This design would then be input Into a code generation
subsystem. There are two aspects of Balzer's work that are relevant here.
First, he attempts to develop techniques that enable one to carry out the
InITI;I phases of the design effort. Incomplete goal-oriented specifications
are first translated into abstract, incompiete functional specifications and
then reflined into a complete set of formal specifications for the program.
Second, the knowledge used by Balzer's system is domain Independent. This
system can be contrasted with the programs of Long (1977) and Mark (1976)
which are strongly domain dependent, and where design probiems are proposed in
a slngle micro-world.

A system that Is designed to deal with the problems of detalled design
and code generation Is a program called PECOS (Barstow, 1977, 1979}, PECOS
generates LISP code from a high level description of input and output date
structures and the algorithms to be used to solve the problem. A
distinguishing feature of PECOS is that the program uses a collectlon of
rules. It encodes both general knowledge and specific Information about L ISP
to gulde its problem solving efforts, rather than using a uniform strategy
| ike means-ends analysls.

PECOS' knowledge base Is In the form of a large set of rules. General

rules deal with representation techniques for collections, enumeration

techniques for collections, and representation techniques for mapping. Each
of these subsets of rules can be organized Into a hierarchical structure with
a number of Intermediate leveis between the most abstract concepts (e.g.

col lection) and Information about specific procedures or data structures (e.g.
| Inked free cells),

PECOS employs problem solving mechanisms that Iteratively refine each
component of the specifications. A partially refined subproblem Is selected,
and then a rule (s applied to it. Each rule appiication can produce one of
three outcomes. First, the subprobiem can be refined to the next lower level
of detall. Second, crucial properties of some component of the subproblem can
be identified and included in the description. Third, additional Information
about the subproblem can be gathered.

This review of autamatic programming demonstrates that there are two
components to the task of software design. The first Is the +fransiation of the
inlttial goal-oriented specifications into a high-level functional
decomposition of the original problem. This incomplete, abstract description
of the problem must then be refineu into a set of formal specificatlons that
preclsely deflne data structures, control structures, and the functicns
performed by varlous modules In the program. The second stage of the design
process involves a collection of implementation decisions. These decisions
specify data structures and algorithms that satisfy the functional
descriptlions and efficlency criteria., The first phase requires powerful

problem soiving strategies that can factor the original probiem info a

collection of subproblems. It also requires the generation of successive

ref inements of each subproblem, [ncorporating more and more detall about the

developing solution.

Models of Planning and Design
There exist two problem solving systems (Sacerdot!, 1975; Hayes~Roth and
Hayes=-Roth, 1979) which contaln mechanisms that seem adequate to carry out the

processes required In the Initial phase of the design process. Both of these

— —————— - -

systems generate a plan of action.
Sacerdoti's (1975) NOAH solves robot planning problems by a process of
successive refinement. Sacerdoti assumes that the knowledge necessary to
.i generate a plan Is organized In a col lection of knowledge structures, each of
which contalns the speciflication of some subgoal and the actlons necessary to
2 accomplish that subgoal. Each unit of knowledge has the Information necessary
to take one element of a developing plan and produce its next more detailed
E | ref inement. Sacerdot! assumes that the complete plan is generated
Iteratively. At any stage of the planning process, each segment of the plan

Is expanded to its next level of refinement, Then generalized problem solving

processes called critics are used to reorganize this more detailed plan into

a1 . ——

an internally consistent and efficlient sequence of actions. The process

repeats itself at the next level, terminating with a plan whose indlividual

- -— -
o

T e
e o s ——— * o B

steps can be executed to solve the Inltlal probiem.

-

Hayes-Roth and Hayes~Roth (1979) describe a HEARSAY-|ike system whlch
plans routes for performing a collection of everyday errands. Knowledge about

the planning of errands Is organized Into a collection of pattern-directed

moduies, called spectalists, that communicate through a global data structure

.
—

P

- -
e

L T ey W
R W et ————— * SR

.
.

S

called the blackboard. The behavior of this system Is opportunistic In the

sense that data currently on the biackboard can trigger a speclalist that
makes a declslon at some arbitrary level of abstracticn In the developing
plan.

Hayes-Roth and Hayes-Roth point out that a system [ike NOAH is quite
rigid, In that it is restricted to a purely top-down, breadth-first expansion
of a solution., Their system, in contrast, Is capable of making a best or most
useful decislion at any level of abstraction; is capable of Incremental or
partial planning; and can adopt different planning methods depending upon the
speciflcs of a glven problem,

Many of Hayes-Roth and Hayes-Roth's criticlisms concerning the rigidity of
a program |lke NOAH are well taken. On the other hand, many of the phenomena
that they have observed In their protocols may be due to the task and the
level of expertise of thelr subjects. None of thelr subjects had extensive
experlence with errand planning tasks. It may be the case that one would
observe quite different behavior In an environment that required the solution
of a large number of subproblems and the Integration of these solutions. One
might also expect more orderly kinds of behavior In situations where
successful performance required the integration and utiilzation of a large,
wel |-organized body of relevant knowledge.

There has been a |imited amount of research on the process of design or
on problems that are difflicult enough to require the construction of an

elaborate plan, Much of the work on expert problem solving In thermodynamics

(Bhaskar and Simon, 1977), physlcs (Larkin, 1977), and other semantically rich

'l

— ~ —— - -
S B A ———— S T aem L

.
— - ~e
S -

g 4

VD SUBp T D PG SIRETS AV S ey e s i sesrag e - . -

domalns [s not directiy relevant to processes involved in solving design
problems, since these studles all use problems that can be solved by a single,
well understood problem method, or schema. An expert In these domains first
has to identity the relevant schema and then apply the schema to the probiem.
In contrast, the major task In design is the reduction of the origlinal probiem
into a collection of subproblems.

Levin (1976) has attempted to develop a theory of software design
processes that Is conslistent with current thinking on the structure of the
human information processing system and known problem solving methods. Levin
postulates that design can be viewed as Involving three fundamental processes~
-"selecting problems to work on, gathering Information needed for the
solution, and generating solutions",(Levin, 1976, p. 2). Levin argues that
the problem selection process ls controlled by a set of global strategies and
local Information about constraints that are directly relevant to the current
subproblem. He developed a simulation model that takes as Input the protocol
of an expert designer working on a falrly difficult problem and produces a
I Ist of subgoals generated by that designer durlng the process of solving the
probjem,

Simon (1973) sketches out a theory of psychologlical processes Involved a
design task in the context of discussing the distinction between well
structured and 111 structured problems.

The whole [architectural] design then, begins to
acqulire structure by being decomposed into various
problems of component desigr, and by evoking, as the
design progresses, all kinds of requirements to be applled

In testing the design of its components. During any glven
short period of time, the architect wiil find himself

1"

SN e e e

working on a problem whlch, perhaps being In an 111
structured state, soon converts itself through evocation
from memory Into a well structured problem (Simon, 1973,
p. 190).

Simon's view of the design process Is that the original design problem is
decomposed into a collection of well structured subproblems under the control
of some type of executive process that carrles out the necessary coordination
functions. Also note that Information retrieved from long term memory Is
incorporated Into the developing solution; it is this additional Information
that converts the original ill structured problem Into a collection of well
structured probiems.

Much of the work discussed above focuses on the decomposition of compiex
tasks into more manageable subtasks. Our Interpretation of the |lterature on
software design is that this decompositional process {s central to the task.
Moreover, we bel ieve that the mastery of decomposition should be what
differentiates experts fram novices. The 1heory to be presented next Is bullt

on the process of decomposition and its assoclated control strategies.

A THEORY OF PROBLEM SOLVING IN SOFTWARE DESIGN
The following Is an outline of a theory of processes Involved in solving
a software design problem. The successful performance of this task involves
the coordination of a complex set of processes. Some apply abstract knowledge
about the task. Others retrieve computer sclence knowledge or Information

about the design problem or are [nvolved In the storage of relevant

Information for later use In solving probliems. The focus of this discussion

— i

et - —

T T T

e R
S s et * SN S e o s o e

-
Py

will be on the global structure of the design task, particularly Its gulding
control processes, and on the manipuiation of knowledge within the problem
solving effort.

Experts have knowledge concerning the overal | structure of a good design
and of the process of generating one, Using this knowledge, they direct their
actions to insure that thelr designs wlll satisfy these structural
constraints. This Implies that skilled desligners have knowledge describing
the structure of a design independent of its content. Thls abstract knowledge
about design and design processes, along with the set of procedures which
Implement these processes, will be referred to as the "design schema." This
schema, which develops through experience with software design, enables
efficient management of a designer's resources in doing this particular
speclial ized and complex task. We propose that the generation of a design Is
controlied by the Interaction between the design schema and the more specific
knowledge that describes how to accomp!llIsh particuiar goals.

A schema is a higher order knowledge structure which governs behavlor in
a particular damain or activity, providing a broad abstract structure onto
which an exemplar Is to be mapped. These knowledge structures speclfy
principal elements of a given damain and include mechanisms which drive the
generation process and which lead to outcomes which are structured according
to conventions shared by expert members In a discipline, A schema can be used
to organize complex material into constituents and may be applied recursively
to break same of these constituents down further. These same structures also

gulide the comprehension process by arranging incoming information so that It

13

o

. e mn A KA

TSy

L4

e e ey W W~
R e e —————s. - e WY D, | o e s o o i o

is structured according to the underlying abstract schema. Absence of an
appropriate schema can interfere with both the initial comprehension and
subsequent recall of a text.

The design schema Is used In both the generation and comprehension of
software designs. The design schema is not tied to any speciflic problem
domaln, but consists instead of abstract knowiedge about the structure of a
completed design and the processes involved in the generation of that design.

I+ accounts for the overall structure of expert design behavior and the

similarities among experts. Of course, the design schema will differ from
expert to expert, since thelr experiences with software design will not be
identical. However, the overall nature of these schemata will be similar for

most people., Therefore, we choose to slmplify this discussion by referring to
a single, modal design schema.

The design schema develops as a result of experience with software
design. Originally, a designer's approach to this task is assumed to involve
general problem solving strateglies, such as "divide and conquer." As an
indlvidual has more and more experience with this actlvity, these general
strategies are transformed into a special ized schema. The schema is developed
through the additlon of damaln-speciflic concepts, tactics, and evaluative
criteria., Whenever a designer's speclal ized schema is inadequate to solve a
problem, more general strategies take over.

The design schema is assumed to [nclude: 1) a collection of components
which partition the given problem into a set of meaningful tasks, 2)

components which add elements to tasks which assure that they will function

14

N®

properly (e.g., initlalization of data structures or of loops), 3) a set of
processes that control the generation and/or comprehension of designs, and 4)
evaluation and generation procedures which ensure effective utlliization of
knowledge. Each component of the design schema Is composed of both declarative
and procedural knowledge about the abstract nature of the design process. The
schema can be applled recursively, which leads to a modular decomposition of
the problem into more and more detailed modules.

The schema can be viewed as driving the gensration of a software design
by breaking up the Initial task Into a set of subproblems. Knowledge of the
particular subproblems that are identified during this decomposition Interacts
heavily with the schema. However, the déslgn schema itself does not contain
know!edge about any particular class of problems. The schema can be applied to
the orlglnal problem or to any subproblem at a lower level. The recursive
application of the design schema fto subproblems enables decomposition of each
problem into a manageable set of tasks.

How the decomposition proceeds depends upon the designer, the designer's
experlence and the problem at hand. There are several decomposition
strategies that a designer can use to guide the process. One strategy is to
break the problem Into input, process, and output elements. While there are
other strategies that could be used to decompose some problems, the [nput-
process-output strategy is preeminently used. |In order to keep this
discussion more concrete, we will describe decomposition in terms of this
prevall lng strategy.

The Initial pass at decomposition results In a representation of the

15

problem that Is a simplified "solution model" of the system. That is, a model
Is devised specifying a set of tasks that wlil solve the problem and a control
structure for these tasks. It is then expanded into ¢ cet of wel |-def ined
subproblems. The solutions to these subproblems represent a solution to the
orlglnal design problem. This process of decomposition Is now applied to each
subproblem In turn, resulting In more and more detailed plans of what should
be done to accomplish the task. Once an Individual selects a glven element to
refine further, the schema is assumed to execute to completion, developing a
solutfon model for that element and refining It into a more detalled plan. if
any of the elements resulting from this process are complex (i.e., accomplish
multiple functions that are not recognized as having known solutions), the
schema Is called recursively to reduce them to the next level of detall.

The application of the schema to an element of a design causes a set of
high level goals and procedures for accomplIshing those goals to be activated.
Thus, the schema Includes procedures which examine Information relevant to the
expansion of a given element, critique potential solutions, generate
alternative solutions for a subproblem, etc. The Input component, for
example, finds information that must be passed to a process component before
the actual processing can be initiated, 1f the chosen input data structure is
complex, that Is, requires some degree of processing itseif to generate the
appropriate data structure, then a new subproblem is generated as a descendant
of the origlnal one.

The design schema represents the global organization of a desligner's

professional knowiedge. As such, it will Impact almost every facet of the

16

designer's behavlor in the domain., Nevertheless, the design schema does not
encompass a person's knowledge of specific facts In computer science or
understanding of how things functlon in the real world. There are undoubted!y
other aspects of this domain which should not be subsumed under the schema,
but our theory Is not sufficlentiy developed to Isolate them at this point.

The decamposition process uses two additlonal problem solving strategies.
The first can be described as problem solving by analogy, or, to use Sussman's
(1977) term, "the debugging of almost right plans”. When the solution model
generated for a gliven subproblem, or some part of It, is recognized as being
analogous to an already understood algorlithm, that algorithm Is evaluated for
applicabillty In the current context. If [t is found to be reasonably
applicable, It Is debugged and incorporated Into the developing solution,

This attempt to retrleve previous soiutions is Invoked once a solution model
has been derived, but before any further refinement takes place.

The second method can be characterized as problem solving by
understanding. This Is prominent In cases where an element Identified by
applicatlon of the design schema Is not understood In enough detail for the
design schema to be appllied to It. The designer's knowledge of the problem
area In question, as well as of computer sclence, Is then used to refine the
understanding of this element. This method may be employed at any point In the
solution, 1t Is most frequently applied when developing a solution model, but
can also be applled durling refinement of a subproblem.

In addition to controlllng the overal | problem solving process, the

design schema has some coordination and storage functions. Successful solution

of a design problem requires that Information generated during each problem .

solving episode be stored In long-term memory. This Information must be
Interconnected with the expert's knowledge about computer science as well as
with the developing solution. Much of what goes on can be described as the
devel opment of an understanding of the problem. The Information generated

; during these understanding phases must be stored such that it can be retrieved
later for the solutlon of other subproblems. The design schema ensures that
successive eplsodes are organized so information generated can be stored in a
coherent representation of the developing solution.

| The utilization of memory is Influenced by Its organization and by the
effectiveness of the abstract cues provided by the schema. Experience enables

{ concepts to be |inked on the basis of the utility of considering the concepts
Yogether. This usefulness can be defined In terms of concepts which

frequently occur in the same context (e.g., Iinked [Ists and efficient

-

Insertion and deletion of items at random places within the list) or which are
L alternative solution techniques to simiiar problens (e.g., & symbol table may

be represented as a hash table or as a static tree table).

When a computer sclence concept Is learned, that concept Is assoclated

with the context In which it is learned. For example, one might first learn

. =y

L ep e W
LA R B o A — T D e e

about a particutar data structure In the context of a certaln problem. Later,
In another problem which would be appropriate for this type of data structure,
one might fall to apply this new concept, since the current context might not

encourage its retrieval. Eventually, through experlence with the concept In

many other contexts, [t becomes |inked to more abstract conditions for Its

.
—

~ e

o~

18

{

- e = —

- -———
R

an

e - ——y . W
O * A B e ———

.
—
e

use. Further, as a person's design schema develops such that it can manage
the complexlty of alternate solutions, this concept would become connected to
the concepts of other data structures which would be considered In similar
contexts. Thus memory organization Is altered, reflecting the desligner's
developing schema and previous experiences.

The major control processes of the design schema are summarized as a set
of very abstract production rules in Fligure 1, Each rule encapsulates a
complex subprocess that an expert may use while generating a software design.
The rules are an attempt to capture the giobal control processes only; many
aspects of the design schema are not addressed at all. In particular, no
reference Is made to the processes that generate alternative sofutions or
critique designs, or to the memory coordlination functions that the schema
performs. Moreover, the rules only refer to the generation of a design; they

do not encompass Its comprehension,

Insert Figure 1 about here

The goal of software design is to break down a problem into a set of
subprocesses which accompl ish the task. After the initlal decomposition,
there may be multiple subproblems to be solved. The designer must have a way
of selecting a problem to work on from the currently unsolved subproblems.
The selection rule (Rule 1) provides a coherent way of determining what

problem to tackle next. The rules assume that the 1|ist of unsolved

19

subproblems are stored on an agenda. The selection rule results in one of them

being marked as a current subprobiem. The other rules are applied to this
problem,

The usual order in which a designer attempts subprobiem solution Is top~
down, breadth-flrst. The design schema causes each element of the current
Iteration to be expanded to the next level of detaii. This expansion continues
untii a new representation of the complete solution Is developed at the next
level of detail. Solving the problem top~down, breadth-first ensures that ail
of the Information about the current state of the design at one level of
abstraction wlll be available to the next iteration.

One reason for this strategy Is that the elements of a developing design
can Interact with each other. Although one of the heurlstics that guides the
decomposition process is the attempt to define subproblems that do not
interact or Interact only weakly, this Is not always possible. Further
ref inement of one element may require knowledge of decisions that will be made
in developing a not-yet-considered element.

A desligner may choose to deviate from this order. These deviations are
dictated by Individual differences in design style, in the amount of knowledge
that the designer may have concerning the problem, or in differences in the
solutlion model. The solutlon model with its varlous constituents may enable a
designer to recognize that a solution relevant to the current problem is
known. This solution then can be adapted to the current situation. Also, the
representation of each element of the solution model may enable a designer to

estimate their relative difflculties or to identify potential Interactions

20

)
!
i
i
i
{

which Impact further development of the design. The realization that one or
more constituents have known solutions, are critical for success, present
special difficulties, eftc., can cause the designer to deviate from a top-down,
breadth-first expansion of the overal! design by assigning a higher priority
to a particular constltuent.

Once a subproblem has been selected, the designer attempts to derive a
solutlon model for it (Rule 2). Recall that the solution model is an abstract
simplified description of elements of the subproblem's solution. This
solution model 1s the basis for all succeeding work on this problem. Rules 2
through 5 describe the processes that may result In the generation of the
solution mode! for the current subproblem, If the current subprobiem Is
perceived to be complex, the designer must first undertake to reformulate It
before a solution model can be generated. Rule 3 represents the process by
which Information relevant to the subproblem Is considered, and a new more
understandable problem Is produced. Once It Is precisely formulated, a
solution model Is generated If the problem requires further decomposition
(Rule 5). |f the problem, once understood, is sufficliently simple, It is
marked as solved and Is not further considered (Rule 4).

The next set of rules (Rules 6 through 10) encompass the processes by
which a designer attempts to retrieve from memory a previously constructed
solution to all or part of the current subproblem, First, the solution mode!
for this problem Is used as a retrieval cue to access potential solutlons in

memory (Rule 6). These solutions are then evaluated for thelr usefulness In

the current context (Rule 7)., The rules give a simplified characterization of

the results of this evaluation process. The solutlon is either accepted as Is
(Rule 8), modified Yo fit the current situation (Rule 9), or rejected (Rule
10).

If no usable solution to the current subproblem Is found, the solution
model 1s refined into a collection of well-defined subproblems (Rule 11).
This refinement process takes Into account data flow; functional analysis;

aesthetic, practical, and other criteria; and implementation considerations,

Each new subproblem thus generated Is added to the agenda. The set of rules
Is applied to the subproblems on the agenda until ail problems are considered
to be solved,

The theory just presented describes a mechanlsm by which experts are able

to integrate and structure thelir high level knowledge of software design.
While experts In the flield should manifest mature design schemata, we would
not exp«ct beginning designers to show evidence In their behavior of thls
complex organization., Therefore, many differences we might observe between
experts and novices can be attributed to differences in the state of

development of their design schemata,

A COMPARISON OF EXPERT AND NOVICE DESIGN PROCESSES
The processes involved in designing software are learned through
experience. To examline thelr development, we collected thinking aloud
protocols from people at various skill levels. This set of protocols forms a

rich data base of evidence about the problem solving processes used In

software design. There are, of course, many simllarities in the way experts

and novices approach this process; subjects at different levels used many of
the same global processes. Differences as a function of expertise fail Into
two major categories: the processes used to decompose the problem and solve
indIvidual subproblems, and the representation and utilization of relevant

knowledge. In this section, the similarities and differences among subjects

will be discussed and related to the theoretical ldeas proposed above.

Subjects and Materials
Four of the subjects were experienced designers. They include a
professor of electrical engineering (S35}, two graduate studen*s In computer
; science (S2 and S5), both of whom had worked as programmers aind designers for
several years, and a professlonal systems analyst with over ten years
' experience (S3),
The five novices were undergraduate students recrulited from an assembly
ﬁ ' language programming class. They had all taken from four to elght computer
science courses; most had had part-time programming jobs. While these
1 2 sub jects are moderately experienced programmers, they have little experience
i with software design per se. We selected two subjects fram this group (S17
. and S$19) and examined thelr thinking aloud protocols In detail. Both these
;. subjects had taken a course that specifical iy taught software design.
We also collected a protocol from a subject with no software design
) exper ience (525, whom we will call a pre-novice), This subject has taken
[several programming courses and has written programs In the course of the
research in which she Is involved. Her experlence differs from the novices In

E o two ways: her formal training has dealt solely with the practical aspects of

23

programming, and therefore she has |[ttle knowledge of the theoretical .

constructs of computer sclence; and, all of her programming experience has

been statistical programming in FORTRAN.

Insert Figure 2 about here

|
¢
¢ ©80 0000000050 CP 8000000000000 0s0000000s0OCESEOLTES
¢

The particular problem given to the subjects Is to design a page-keyed

indexing system. The problem specifications are shown In Figure 2. This

| problem was chosen because It is of moderate diffliculty and understandable to
individuals with a wide range of knowledge of software design, while not

! requiring knowledge of highly speclal Ized techniques that would be outside the
competence of some expert subjects. That Is, a reasonable design could be
constructed for this task using only the techniques taught In upper-division
undergraduate courses In computer science or those contained In standard
textbooks on computer science algorithms. A variety of approaches, however,

- could be taken to deslign such a system.

?i The protocols of a subset of the subjects were analyzed in detall, while
‘3 others were examined more cursorlily to find corroborating evidence. The

,{ method by which this analyslis was carried out and the results obtained can be
f! found In Atwood and Jeffries (1980). The discussion below is based primarily
!' on the detalled analysis, but examples have been chosen freely fram ali the

protocols.

Similaritles Across Expertise Levels

On a first reading of these protocols, one Is struck by the variatlions In
the design solutions as much within expertise levels as across them. Both the
design style of the Individual subject and the set of subproblems he or she
chose to attack make each solution very different from any of the others.

More careful conslderation, however, brings up many similarities, both within
experience groups and across all The subjects.

Almost all the subjects approached the problem with the same global
control strategy: decompose the problem into subprobiems. They began wlth an
initlal sketchy parse of the problem, which we have called the solution model.
Some subjects were quite expllicit about thelir solution models, while for
others it was necessary to Infer the underlyling model. Whenever a subject
made a quick, smooth transition from one element of the solution to the next,
without any overt consideration of alternatives, and without reference to
external memory, we assumed that the solution model underiay this decislon.

The solutlion models for the Indexer problem are surprisingly simliar for
both experts and novices. |In general, subjects decided to read in the terms,
butld some sort of data structure to contain them, compare the terms to the
text, associate the page numbers with each term, and output the terms and page
We do not assume that this would be true for all software design

numbers.

problems. The indexer problem was chosen to be "stralghtforward"; for such a

problem, expertise Is needed not for the Initial solution model, but for the

expansion of this model Into a well~defined set of subproblems and the further

ref inement of those subproblems, Our results are therefore potentially |Imited

+o simllar stralghtforward problems, In tasks for which the determination of

25

a solution model Is Itself a difficult task, quite different problem solving
methods may be used. Once the Inltlal solution model was derived, the subjects
attempted to expand thls lteratively., No subject went directly fram the
solution model to a complete solutlon. They broke the problem into
subproblems, and reflned the solutlon through several levels.

As a group, the novices explored a set of subproblems simiiar to those
examlned by the experts., The Initial decomposition led to equivalent
constituents, and In further iterations the novices as a group developed
subproblems that were still comparable to the experts. The experts tended to
examine more subproblems and frequentiy found different solutions. Even for
idlosyncratic aspects of the problem, however (e.g., how to treat hyphenated
words, terms that cross page boundarjes), the novices were as |lkely as the
experts to Incorporate a particular element into the solution,

While the novices applled the same general problem solving methods as did
the experts, their solutlons were neither as correct nor as complete,
Furthermore, the novices were not able to apply the more efficlent problem
solving processes that the experts used. The novices were lacking In skllls
In two areas: processes for solving subproblems, and ways of representing

knowledge effectively.
Subproblem Solution Processes
Decomposition. When these subjects, both experts and novices, percelved

a particular problem to be complex, they decomposed It Into a col lectlon of

more manageable subproblems. The experts, of course, were more effective than

26

the novices at doing this. They showed some styllstic differences in when and
how they used the decomposition process, but [ts use Is pervasive In all four
expert protocols,

S2's protocol Is an almost perfect example of solution by repeated
decomposition. He Is a proponent of design by stepwise refinement; In this
protocol he rigidly adheres to such a strategy. His initial decomposition Is a
l1sting of the major steps to be accomp!ished, l|ittle more than a precise
reformulation of his solution model. On the next iteration he adds a control
structure to this collection of modules. Successive passes decompose these
modules Into sets of submodules untl!l he Is satisfled that he has reached the
level of primitive operations.

$3 also Iteratively decomposes the problem In a top-down, breadth-first,
beginning to end manner. Her style, and the design she eventually produces,
Is simllar to that of S2, except that her protocol Is interspersed with
digressions that relate to subproblems at other levels and at other positions
in the problem, S3 also attempts fewer Iterations than S2, bringling the
problem to a slightly higher level of detall In two passes as S2 did In flve
or six. In fact, at the end of the protocol, she real izes that the second
iteration is so much more detalled than the first that i+ taxes her abllity to
comprehend the solution., She then Incorporates a sketchy third iteration at a
"higher" level than the prevlious one.

After articulating his problem model, S5 notes that In order to know how
to read the term file Into a data structure, he needs to know more about how

the matcher works. He then proceeds to work out the design of the matcher and

.
-

iy . . W
v Aty = 0 £ B S am———— o o

~

Its associated data structures. This places him directly In the middlie of the

decomposition tree, working simultaneously on two distinct branches. After
ascertaining how the match process would operate, he proceeds to flesh out the
design, proceeding from here In a top-down, breadth-flrst, beginning to end
manner.

The core of S35's solution is an algorithm he retrlieves that defines the
term data structure and the matcher. Using thls as a base, he bullds the
design in a top-down, breadth-first manner, although he does not expand It
beginning to end. The reason for this is that he defines the problem in terms
of data structures derived from his original functional analysis of the
problem decomposition., Occaslonal deviations from this breadth-first order
occur when he attempts to define low level primitive actions which are the
buflding blocks of his deslgn. |

All of these experts demonstrate the existence of a polished design
schema and a sophisticated ability to use the decomposition method to expand
their designs. DIifferences across experts were In part dictated by disparate
design styles, but to a great extent were due fo differences in their
knowledge of and abillity to retrlieve a relevant solution plan.

The novices, on the other hand, were much less effective In thelr use of
the iterative decomposition method. They seem to lack the more subtle aspects
of the design schema. A wel |~developed schema should guide the designer toward
the production of a "good" design, as opposed to one that accompl!shes the

task "by hook or by crook." This means that considerations of efficlency,

aesthetics, etc., should Influence the manner In which design elements are

b ———————

- e c—

- -
[SPUP-SE S -

-y — e W T

i

_‘

-

expanded. There Is no evidence of this in the rovices. Furthermore, the schema
should include procedures that enable designers to make resource decisions
about the order In which to expand the modules, e.g., most difflcult first, or
a module that uses a data structure might be designed before the one that
produces it., In the novices that we have examined In detail, we see no
deviations from the default breadth-first, beginning to end consideration of
modules.

The best of the novices was S19. He Is the only novice that iterates the
problem through more than two levels of decomposition. However, beyond the
first level, he Is unable to recursively apply some of the same decomposition
strategles he used earller, S19 gets particularly bogged down In his
“"compare" routine, rewriting It several times without complete success. On
each attempt he simply trles to generate a solutlion through brute force by
writing down the necessary steps. There is no hint of having generated a
model for this process nor of any attempt to further decompose it.

S17 was able to decompose the Indexer prot.lem and to generate an adequate
Inltlal pass at a solution. He then attempted to expand his solution (mostly
at the urging of the experimenter). However, he makes no attempt to further
decompose hlis chosen modules., Each subsequent iteration simply repeats the
previous solution, adding on new "facts" as he discovers them. For example,
at one point he considers the possibility thai a term straddles pages. He
changes his design to accommodate this, but he does so by augmenting existing
elements, not by decomposing them into submodules. Thls sort of behavior

Indicates that S17 Is unable to recursively apply the design schema.

29

R A S

— . A~

r‘r" T - — ; : T R x I

l“
|
g

f Another of the novices writes down a solution In terms of steps, Instead

f : of modules. The distinction between steps and modules Is necessarily a fuzzy

one, However, a set of steps differs from a modular decomposition In that

steps have no hierarchical structure, steps ot very different levels of detall

may occur together, and steps have only a primitive control structure., In the

i second Iteration of his design, this novice merely produces a similar set of
steps, more specifical ly tied to the architectuvre of a particular computer,
He appears to understand that a problem should be broken down, but has not
developed a design approach which decompcses Into subproblems,

N Although the novices have not Incorporated the more subtle aspects of the

design schema into their behavior, they can apply the basic principles. The
f pre-novice, S25, however, has not developed even a rudimentary design schema.
First, S25's protocol is qualitatively different from those of the computer
sclence majors. They produced designs which, wi.ile differing In many detalils ﬁ
from those of the experts, were at least marginally acceptable solutions to

the problem. S25 did not produce a desi¢n. She generated a mixture of FORTRAN

i X code and comments that together could be taken as a partlal solution to the
?i task of writing a program to solve the indexer problem. Moreover, she got
ié quite bogged down fn the selection of data structures for the text and terms

and In the Implementation of procedures to compare items In these structures.
Because of these difficultlies, she eventually abandoned the task without

generating a complete solution,

T . A
Y e = d———————tn— ¢ .

$25 made no attempt to decompose the probliem; she did not seem to be

using any kind of an overal!l mode! to guide her solution. She let the problem

it . Y

.
—

description and the portion of the "program" already written direct her
expanslion of a solution. information did not seem to accumulate éver the
solution attempt; she attacked the same subproblem repeatedly, but often made
no progress beyond the Initial attempt. She did seem to understand that Input,
proce§s, and output components were needed, but this was not sufficient to
produce a correct Inltial decomposition of the problem.

We take this continuum of more effective use of the decomposition method
with Increasing experlience as strong evidence for both the reality and the
usefuiness of the design schema., Another aspect of expertise that Is apparent
In these protocols Is the ability of the experts to generate and evaluate
alternative solutions to a subproblem,

Evaluation of Alternatives. When the experts are trying to determine
whether a particular plan Is actually a good sclution to a subproblem, they
state alternative solutions and select among them, S3, for example,
explicitiy mentions that the page numbers coulc¢ be stored In an array or a
linked |ist., She does some calculations of the relaflve storage requlirements
of each and chooses the |inked |ist because it Is more efficlent. S35 spends
same time considering two ways of Implementing his term data structure; one Is
time efficlent, and the other Is storage efficient. He concludes that,
without knowledge of the actual computer system to be used, he does not have
enough Information to declde which Is better. He chooses to leave both as
alternatives.

The novices seldom consider more than one possible solution to any

subprobiem. From the marginal utliity of some of the solutions they do

L e

-——
e PR rm i -

retrieve, it seems that they are hard pressed to find even one solution to
many subproblems. For example, at one point, S19 says "This might be the only
way | can think of to be able to do thils. [1's going to be awful expensive,"
and elsewhere, "lt's inefficlent and expensive, but It's easy." He seems to
have some abllity to critique his solutions, but Is at a loss to correct the
deficlencies he finds,

In the few cases in which the novicec chocse among alternatives, they
make simple dichotomous declisions (do X or not X). Thelr decision is
invariably made on the basls of programming corvenience. For example, S19
notices that a term could straddle a page. He spends some tIme deciding
whether or not to permit this, and decides that it is easler not to allow it,
although this solution Is uniikely to be rea'istic In terms of indexing a
textbook.

Retrlieval of Known Solutions. One of the features of the decomposition
technique [s that It enables the designer to convert a problem Into a set of
simpler subproblems, eventually reachlng +he pclint where all the subproblems
have known solutions. While the novices attempt to employ decomposition, we
see no evidence that they do so in order to arrive at a set of known
solutions, The experts, in contrast, seem to have a large repertory of
solutions and of methods for decomposing a-problem. The clearest examples of
this are when some of the expert subjects were able to recall and apply a
single solution to the major problem tasks. $35 and S5 both attempted this.

S35, after reading the speclificatlons, Immediately states "well, the

obvlious answer to this Is to use the technique of Aho and Corasick, which

appeared In CACM " (Aho and Corasick, 1975), This article describes an
algorithm for searching text for embedded strings. He says, "basically what
you do Is you read the term flle, and you create a finlte state machine fram
it. And then you apply this finite state machine to the text." S35 then spends
the next two hours expanding this solution intc a complete design,
Incorporating the idiosyncrasies of this problcm (e.g., that the page number
Is not known until the end of the page) Into this general algorithm, It Is
apparent that his understanding of the algorithm strongly influences the
expanding design and many of the design decislons,

After his Inltial parsing of the problem, S5 notes that the match process
Is critical for an efficlent and successful sclution. This reminds him of a
publ ished algorithm that may be app!licable to this situation. "Now my
Immediate inclination Is to, about three CACMs ago, this particular problem
was discussed.”" The algorithm (Boyer and Moore, 1977) he refers to Is similar
to the one recal led by S35.

S5's memory of this algorithm is somewhat sketchy, though, and he is
unsure of how It Interacts with the rest of the design. He works through the
match process and Its assoclated data structure In some detall. The resulting
algorithm is similar to, but not Identical with, the published algorithm. In
a very real sense, he constructs an original solutlon that Incorporates many
of the features that he recalis from the Boyer and Moore algorithm. From
there, he proceeds lteratively through ref Inements of the design as a whole.

Our other two experts, S2 and S$3, did not retrieve a single solution to

the maJor tasks, but they frequentiy solved subproblems by incorporating plans

33

that they had used before. For example, S2 uses a |lnked |ist to store the

page numbers. He notes that the Insertion procedure Is samewhat tricky to
Implement; he would prefer to refer to one of his earller programs, rather
than spend the time to work out the details agaln. S3, when consldering the
problem that hyphens can serve two distinct functions In the text (as part of
a word or to dlvide a word at a |Ine boundary), mentions that she knows of a
simllar case that was solved by requiring that distinct characters be used In
each case.

The experts not only retrieve solution plans to all or part of the
problem, but they are able to modify those solutions to fit the current
situation. S35's deslign was a modification of a well understood plan. S5
only retrieved the skeleton of a plan; he spent most of his time augmenting
and altering this plan to fit the actual problem.

The novices show no evidence that they are trying to adapt previously
learned solutions to any part of thls problem. No novice ever made a
statement |ike "this is just Ilke X" or "I did something similar when Y."™ They
do retrlieve solutlons, but only at the lowest levels. For example, S17
decided that he would flag the first empty position for each term in his page
number array. This Is a solution to the problem of locating the current end of
the page number |ist, but It 1s far fram the best one. S17 makes no attempt
to alter thls solution so that I+ accomplishes this in a more efficlient
manner., |t Is not clear whether this is due to his Inability to real ize the
inefficiencies In this solution, or whether he simply does not know what

modi{fications to make.

34

Know|edge Representation

Access to Background Knowledge. The experts demonstrated an Impressive
abllity to retrieve and apply relevant Information In the course of solving
this problem. The appropriate facts are utilized just when they are needed;
important [tems are seldom forgotten., Moreover, they devote |ittle time to
the consideratlion of extraneous Information. In contrast, the novices! lack
of an adequate knowledge organization for solving this problem Is apparent
throughout thelr protocols. They frequently fall to correctly apply knowledge
that Is needed to solve the problem, and the Information that they generate in
the course of solving the problem is offten not avallabloe to them when It iIs
most needed. We attribute this, In part, to the inadequacy of the organizing
functions provided by thelr Immature deslign schemata.

The novices! fallure to apply relevant knowledge can be seen In thelr
selectlon of a data structure for the terms and page numbers. tach term can
potentially have a very large number of page references assoclated with 1t,
but the typical entry will have only a few rsferences. The selected data
structure should al low for the occasional term with an extreme number of
references without having to reserve large amounts of storage for every term.
A linked Iist is a data structure which al lows these properties. Our experts
used a linked |ist to hold the page numbers associated with each term. The
course from which the novices were recruited had recently covered |inked
ltsts. In addition, most, If not all, of them had been exposed to thls
concept in other courses. Thus, we are confident that the subjects were
famillar with the construct. In spite of this, none used such a Iist to hold

the page numbers, They all stored page numbers in an Iimmense array. Several

35

e e

sub jects mentioned that such an arrangement wacs Inefflclent, but none were led

to change it.

The construction of a linked |list Is a technique with which these
subjects are famlliar. However, thelr unierstanding of when that technique Is
applicable does not extend to the current situation. Understanding of the
conditlions under which some piece of knovledge Is applicabie Is one way in
which knowiedge about a domaln becomes integrated. For this iriformation to be
useful, It cannot exist as a set of isoleted facts, but must be related to

other knowledge. For example, linked |Iists would be Interrelated with

Information such as additional types of data structures and methods of gaining

' storage efficlency in a program. The experts have achleved thls integration

of concepts, while 1t is still undergoing development in the novices.

' Episodic Retrleval. The design schera medlates retrieval of information

within a problem solving effort as well &s retrleval of relevant background

knowledge. The experts, with thelr more mature design schemata, were better

able to accumulate useful Information during the course of the solution

attempt and to apply it at the relevant time. The clearest example of this is

S3's handling of the Issue of hyphens in the problem.

v Early In the protocol, S3 notices that the text may contaln hyphens and

b that this complicates the comparlson process. At this point, S3 only notes

this "as being a probiem when you come arcund to conparing." This Issue is not

’
! considered for long portions of the protocol, but it emerges whenever a module
f

ﬂ that Is related to the compare operation «r accessling the text Is consldered.

S3 never mentions hyphens when she is expanding the "read terms" module, but

P g i

1t Is one of the flrst things mentioned when the "construct Index" module Is
taken up.

In contrast, the novices are not only less able to generate relevant
Information, but the information that they do generate Is not stored In an
easlly retrievable form, S19 provides an Illustration. Early In his solution,
he notes that a term may straddle a page. He ceclides that thls possibillty
compl icates the deslgn unnecessarlily and legislates that 1+ will not happen.
He even writes down this assumptlon. Sometime later he again notices that this
problem could occur. He treats this as an entirely new discovery; no mention
Is made of his earller treaiment of the toplc. In fact, during this second
eplsode, he declides to allow terms to straddle page boundaries, but uses the
ending page number instead of the starting page number as the reference. This
too Is written down, but nelther then nor later does he notice that It
contradicts his earl ler assumption.

Another example Is that S17 mistakenly assumes that terms will be single
words, rather than phrases. In the middie of the problem, while rereading the
specifications for some other purpose, he notices the error and comments on
corrections that must be made to allow for multi-word terms. However, none
are Incorporated Into his next iteration of the problem, which only deals with
single word terms. At the end of the sesslon, he notices once more that terms
are phrases and that hls design must be modified to account for that fact.

This fallure.to recall Information over the course of a single solution
attempt is probably the result of two hardlcaps under which the novices must

operate. Flrst, the solution to these problems consumes such a large portion

of thelr resources that they are unable 1c¢ monitor memory for other
potential ly relevant Information. Experts can avoid overloading themselves by
utilization of the design schema., Seconc, their memory representation of the
problem is not organized In such a way as to facilitate the retrieval of
previously generated information.

Understanding of Concepts. The novices fail to have an adequate
understanding of many of the baslc concepts of computer science. These
undergraduates are generally familiar with only one machine (the CDC6400) and
two or three programming |anguages. Much of thelr understanding of the basic
concepts Is tied to thelr experience with one or two exemplars of that concept
and reflects the Idlosyncrasies of that experience. These mistaken assumptions
frequently lead to Inefficlent designs anc occaslonally to outright errors.

Several examples of incomplete or Incorrect understanding of concepts can
be found In the protocols of S17 and S$18. S17, In particular, repeatedly
attempts to Incorporate constructs into his design that he Is aware of, but
does not fully understand. He tells the experimenter that the book text
should be stored as a "binary tree"; i.e., he Intends to read In the book text
and sort It Into alphabetic order (presumably by word). A blnary tree Is an
efficient structure for repeatedly searching ordered col lections of items. It
allows one to fInd an arbltrary Item in the set with substantially less
searching than a sequential search requires, In much the same way that one
looks up an entry in a dictlonary or a phcne book., However, all the
Information as to which word fo!lows another, which are necessary to Isolate

phrases from the text, Is lost. S$17 has apparently learned some of the

38

condltlons under which a binary tree should be used, but he clearly does not

understand the concept well enough to reject it In this obviously unsultable
situation.

Contrast this with the solutlon of 5. He Is quite concerned with
efflcient storage of the terms and the text, He spends over an hour working
out appropriate data structures and how they will be searched, as opposed to
the minute or two spent by S17. S5's solution is to store the text as a
string, and, for very much the reasons mentioned above, to store the terms in
a binary tree. These decislons are exactly opposite to those arrived at by
S17.

S19's protocol shows that he does not completely understand the
difference between computer words and English words. On the computer that he
is famillar with, a computer word wlll contain an English word of up to ten
characters, so for many practical purposes, the distinction is not needed. In
his term data structure, he al locates five (computer) words for each term, one
for each (English) word. While this might not be the most efficient way to
store the terms, It might work for some cdata sets, at least on the CDC6400.
His misunderstanding of the difference geis him into trouble, however, when he
tries to read the text. He Initially tries tc read 1t a line at a time, but
abandons this because he cannot determine how many words are on a line, He
then decides to read the text a word at & time. His assumptlon that an Engllsh
word 's a natural unit for input (It is not; It takes a substantial amount of
computation to determine the word's boundaries) Is due to his confusion

between the two types of words.

39

- -———

——
e A ———— Y S e

- —— . >

-

—
P

I

.- _ -

S$3, on the other hand, not only understands the dlfference between the
two concepts, but Is also aware that the overlapping terminology Is confusing.
When she Is allocating list pointers, she comments "the polnters themselves
are actually in a vector of NT units, or words, well, computer words, | guess,
ess (that's certainly a misused word)." Thus, she is sensitive to the
distinction between the concepts as well as the confusibllity In terminology.

Yet another example Is S17's confusion over what a flag is and when to
use one. A flag is a variable that can take on two values, usually "true" and
"false", It Is used to Indicate the staius of some condition that changes
within the program. S17 has some understanding of the use of flags, as he
Intends to "set a flag back and forth" to signal the end of the text file.
While this Is not an error, it Is not a particularly good use for a flag, as
the end of the text flile will only be reached once, and a simple test for the
condltion would be more sultable.

Later on in the design he needs a way to Indicate which terms have been
found on the current page before the page number Is available. While his
solution incorporates the idea of setting a flag, he calls it a "count", This
misuse of terminology confuses him later on, when he mistakes this "count" for
a count of the number of times each term occurs In the entire text.

Understanding of Implications. [n addition to thelr conceptual failures,
the novices are often unable to extract all the Impllications of a piece of
knowledge. In particular, they are frequently unable to derive the
Implications of the interactions between a task and a computer implementation
of that task. This Is exemplified by the difference In the way the experts

and novices dealt with the subproblem which compares the text and terms.

40

This subproblem is the heart of thic design, since the efficlency of this
routine directly Impacts the overall efficiency of the program. All of the
experts treated the matcher as a difficult prot:lem. They concerned themselves
with many aspects of it: whether comparing shoLld be done character by
character or word by word, how to organize the data to minimize the number of
comparisons that are unsuccessful, what constitutes a correct match, The
novices, for the most part, simply stated the cubproblem and made no further
effort to decompose it. They seemed to treat i+ as too simple to require
further consideration, The experience mc<t of the novices have with compare
procedures Is with those that deal with cumpar Ing numbers. For such cases, the
procedure is quite straightforward. Questions about how much to compare at
once and how to decide If a match has occurred never arlse. The novices dld
not retrieve Information about factors that must be considered In a character
string compare, because they simply did not understand the implications of the
way a computer compares data.

The novice protocols indicate that novices have mastered the jargon of
the fleld; thelir comments are peppered wiih technlical computer science terms.
More careful examination, however, shows that these terms do not have the same
meaning for the novices as they do for the expert. This implies that in some
sense design decisions that are described by 1he same words are not the "same"
for people of different experience levels, |In addition, as the above examples
show, these mlsunderstandings and fallures to deduce relevant implications
frequently lead the novices astray. They confuse similar concepts or apply @

concept when I+ Is Inappropriate or do not take Into account pertlnent

41

o e — - ———————

considerations. In actual designs these subtle errors could be disastrous, as
they probably would not be noticed until the program was written. If the

problem were serious enough that a major change to the design was requlred,

large amounts of effort would have been vasted.

DISCUSSION

The decomposition process Is central to ihe successful derivation of a
software design. |t serves to break a problem cown Into manageable and
minimally Interacting components. Thus, the tesk is reduced to one of solving
several simpler subproblems. For experts, the decomposition and subproblem
selection processes of the design schema dictete the global organization of
thelr design behavior. They first break the problem into its major
constltuents, thus forming a solution model. Durlng each Iteration,
subproblems from the previous cycle are further decomposed, most frequently
leading to a top-down, breadth-flirst expansion of the solution. The Iterative
process continues until a solution Is identifled for each subproblem.

The data show a range of development In the utliization of the
decompos!tion process. At least four distinct levels can be distinguished.
The first level Is exemplified by the pre~novice, S25, who attempted to code
the major steps of the solution directly in FORTRAN. A novice designer at the
next level derives a solution model and converis [t Into a series of steps.
Novices who broke the problem Into steps vwere usually able to Iterate over the
steps at |least once, producing a more deiclled sequence of steps.

The more advanced novices are able 1o brexk the problem into meaningful

42

subproblems, using thelr solution model us a basis. $S17 Is able to carry out

this first level decomposition, but he Is unable to recursively apply this
strategy. S19 Is able to recursively decompose the problem for the first few
levels, but eventually he becames so mired in det:.ls that the strategy breaks
down,

The experts manifest the fourth level of devel opment of the decomposition
processes. They exhiblt all three major components of the strategy: 1) They
break the problem inio manageable, minimal ly interacting parts, 2) they
understand a problem before breaking It Into subproblems, and 3) they retrleve
a known solution, [f one exists. S2 and $3 depended almost completely on the
flrst two of these, while S5 and S35 were able to retrieve a known solution to
a significant portion of the problem.

Experts devote a great deal of effort to understanding a problem before
attempting to break it into subproblems. They clarify constralnts on the
problem, derive thelr Implications, explore potential Interactions, and relate
this Information to real-world knowledge about the task. The novices, on the
other hand, show l|ittle Inclination to explore aspects of a subproblem before
proposing a solutlon. This has serious consequences for both the correctness
and efficiency of thelr designs.

Expert designers employ a set of processes that attempt to find a known
solution to a given subproblem. Critical features of the solution model are
used to search for potentlal ly applicable algorithms. Successful retrieval
requires the designer to have knowledge of relevant solutions and thelr

appllicabil ity conditions, to be able to retrieve the solution in a possibly

43

novel context, and to adapt the solutlon to the partfcular context of the
design problem. The experts show themselves to be skilled at retrleving
algorithms for use In their designs. Novices show no evidence of recognizing
the applilicability of information In a novel situation that they had
unquestionably learned previously. The novices' schemata are deficlent in the
processes that control the retrieval of information for integration Into their
designs.

The experts differed In thelr ability to recall high-level solutions to
the problem, specifically, for the matcher and its assoclated data structures.
S35 retrieved an algorithm fram the | iterature and bullt his solution around
1t. S5 retrieved a skeletal solution to the same subproblems. However, he
chose to work out this solution In some detall before proceeding with the
remainder of the design. 52 and S3 did not retrlieve Information about
possible solutions to these subproblems. Instead, they used the default
decomposition processes to iteratively refine the problem. Both, however,
recalled numerous low-level algorithms that they Incorporated into thelr
designs.

The objective of the decomposition process is to factor a problem Into
weakly Interacting subproblems. However, subproblems can interact, and the

Indlvidual solutions must be Integrated. This can Impose serious coordination

demands upon the pr"‘@lan solver (Simon, 1973). The experts used two

components of the dé;lgn schema to solve this coordination dllemma. First,
experts expand subproblems systomatically, typicaily top-down, breadth-first,

Second, they are able to store detailed and wel |-integrated representations of

Se———————————— R S R

- - ———

- -~ W -
B B W et s s P be s et e .o ot —E e

iy -

e Ve

S T T TR AR R TR T TR T e RS e T

previous problem solving activities and rctrieve them when they become
relevant,

Novices have difficulty coordinating thelr activities because of
ineffective retrieval strategies. Because they do not recognize the
implications of potential Interactions, ruvices are often unable to correctly
Interface subproblems. They also fall to retrieve and Incorporate Information
acquired in the classroam and are unable to integrate Information generated
during earller parts of the solutlon attempt with later efforts. Thus, they
do not generate a conslstent and wel I~-Integraied solution to the problem.

The varliations in performance, both within and between levels of
expertise, demonstrate the complexities of learning the design schema.
Basically, the schema Is learned through actua! experience in doing software
designs; textbook knowledge Is not sufflicient. The experts! years of
experience enable the procadures of the schema to become automatic, freeing
the designer to focus more on the detall- of the speciflic problem. As the more
sophisticated processes of the schema develop, the designer is able to deal
more successfully with complex problems.,

The dlfferences In the ability to use the decomposition process
demonstrate that the schema develops In stages. The levals along this
continuum seem to correspond to Incremental Improvements In a designer's
understanding and control of the decomposition process. Novices first
understand that the problem has to be broken down Into smal ler parts, although
they do not have a good understanding of the nature of those parts. Next they

add the ldea that the breakdown should occur ‘‘treratively; that is, they should

45

e — o war

- - ——

Rt SR SRR, o
A i IR B oo et s e s A e

i

-

go through several cycles of breaking things down. At the next level, they
acquire the abillty to do the decomposition In terms of meaningful
subproblems, and, finally, to recursively apply this strategy. The mature
deslign schema would Include at least the followlng addiflonal processes:
ref inement of understanding, retrieval of known solutions, generation of
alternatives, and critical analysis of solution components.

The processes people use to solve complex problems In thelir fleld of
expertise are Important to the understanding of the development of that skill.
In software design, these processes appear to be special ized versions of more
general methods, which are highly organized and automatic. While these
processes superficially resemble the default methods, they are so strongly
tailored to the speciflc domain fhaf-fhey should be conslidered dlistinct
methods In thelr own right. For any sufficliently complex and wel I-learned
skill, these kinds of organizaticnal structures would seem to be necessary. A
cruclal question, which remains to be addressed, Is what types of skills lend

themselves to the development of such structures.

ACKNOWLEDGEMENTS

! This research was supported by the Office of Naval Research, Personnel
and Training Research programs, Contract No., N00014-78-C-0165, NR157-414,
Computer time was provided by the Sumex-AIM Computing Facility at the Stanford
University School of Medicine which Is supported by grant RR-00785 from the

National Institute of Heal th.

We wish to thank Dr. James Voss for his instructive comments on an

earller version of this paper.

- oo

.
. dent v VAN

-— -y -
L0 SN T P N T, S ST

!
!

REFERENCES '

Aho, A.V., & Corasick, M,J. Efficient string matching: An ald to
bibliographic search. Communications of the ACM, 1975, 18, 333-340.

Atwood, M.E., & Jeffries, R. Studies In plan construction l: Analysis of
an extended protocol (Technical Report SA!-80-028-DEN). Englewood,
Colorado: Sclience Applications, Inc., March 1980,

Balzer, R.M, A global view of autamatic programming. In Third
International Joint Conference on Artiflicial Intellligence: Advance
Papers of the Conference. Menlo Park, California: Stanford Research
Institute, 1973, 494-499,

Balzer, R.M., Goldman, N.,, and Wile, D. Informal ity In program
specifications. In Fifth International Joint Conference on Artificilal
Intel ligence, Cambridge, Massachusetts, August 1977,

Barstow, D.R. A knowledge-based system for automatic program
construction, In Fifth International Jolnt Conference on Artificial
Intelligence: Advance Papers of the Conference, Cambridge,
Massachusetts, August 1977,

Barstow, D.R. An experliment In knowledge-based automatic programming. »
Artificlal Intelligence, 1979, 12, 73-119,

Bhaskar, R, & Simon, H.A., Problem solving In semantically rich domalins:

An example from engineering thermodynamics. Cognitive Science, 1977,
1, 193=-215,

Blermann, A.W. Approaches to automatic programming. In M. Rubinoff and
M.C. Yovits (Eds.), Advances in computers: Volume 15, London: Academic
Press, 1976.

Boehm, B.W. Software design and structuring. In E. Horowitz (Ed.),
Practical strategies for developing large software systems. Reading,
Massachusetts: AddIson-Wesley, 1975,

Boyer, R.S., & Moore, J.S. A fast string searching alroglthm,
Communications of the ACM, 1977, 20, 762-772,

Green, C. A summary of the PS| program synthesls system. In Flfth

International Joint Conference on Artificial Intellligence. Cambridge,
Massachusetts, August, 1977,

Hayes-Roth, B., & Hayes-Roth, F. A cognitive model of planning.
Cognitive Sclence, 1979, 3, 275-310,

. ” - & § i "
s OBEMANL s T 4 i sy ke e ot ke Tl P

Heidorn, C.E. Automatic programming through natural language dlalogue: A
survey. |IBM Journal of Research and Development, 1976, 20, 302-313,

Jackson, M.A. Principles of program design. New York: Academic Press,
1975,

Kintsch, W. K. Psychological processes In dliscourse production,
Preliminary draft of a paper prepared for the Kassel Workshop on
Psychol inguistic Models of Produciion, 1980.

Larkin, J.H. Froblem solving in physics (Technical Report)., Berkeley,
California: University of Cal ifornia, Department of Physics, July
1977.

Levin, S.lL. Problem selection In software design (Technical Report No.
93)., Irvine, California: University of California, Department of
Information and Computer Science, November 1976.

Long, W.J. A program writer (Technical Report No. MIT/LCS/TR-187).
Cambridge, Massachusetts: Massachusetts Institute of Technology,
Laboratory for Computer Sclience, Novenber 1977,

Mark, W.S. The reformulation model of expertise (Technical Report No.
MIT/LCS/TR-172). Cambridge, Massachusetts: Massachusetts Institute of
Technology, Laboratory for Computer Science, December, 1976,

Myers, G.J. Software rellability: Principlies and practices. New York:
Wiltey, 1975,

Sacerdoti, E.D. A structure for plans and behavior (Technical Note 109).
Menio Park, California: Stanfo-d Research [nstitute, August 1975.

; Simon, H.A. Experliments with a heuri-tic compller. Journal of the ACM,
‘ 1963, 10, 493-506.

> Simon, H.A. The heuristic complier., In H.A, Simon and L. Siklossy

! (Eds.), Representation and meaning: Experiments with information
processing systems., Englewood C!iffs, New Jersey: Prentice~Hall,
1972,

- -— -

R editine
s, AN A it e ————— } v\ &7

Simon, H.A. The structure of Ill-structured problems., Artificial
intel lIgence, 1973, 4, 181-201,

Sussman, G.J. Electrical design: A problem for artificial intel!lgence
research, Proceedings of the lnlarnational Joint Conference on
’ Artificial Intelllgence, Cambridge, Masachusetts, 1977, 894-900.

-~

-
—

Warnier, J.D. Logical construction o programs. Lelden, Netherlands:
Stenpert Kroese, 1974.

o a

49

Yourdon, E., & Constantine, L.L. Structured design. New York: Yourdon, -
1975.

DESIGN SCHEMA RULES: SELECTION RULE
DESIGN SCHEMA RULE 1:

IF (no current subproblem exlists)

AND (any unsolved subprobiems on agence)

THEN (select highest priority subproblem or, I1f multiple
subproblems at highest priority, select next
subproblem in breadth-first order at highest
priority and make it new current subproblem)

DESIGN SCHEMA RULES: SOLUTION MODEL DER!VATICN PROCESS
DESIGN SCHEMA RULE 2:

i IF (p Is current subprot:lem)
AND (solution model fur p does not exlist)
THEN (set goal to create solution model for p)

' DESIGN SCHEMA RULE 3:

IF (goal to create solution rodel for p)
AND (p Is not wel! uncerstood)
THEN (retrieve information relevant to p and refine
understanding of p)
AND (add new subpioblem pf to agenda)
AND (make p' currant cubproblem)

DESIGN SCHEMA RULE 4:

IF (goal to create solution mode! for p)

»% AND (p Is undersiood as "frivial")
. THEN (assert that p Is solved)

bi AND (delete p as current subproblem)
. DESIGN SCHEMA RULE 5:

f IF (goal to create solutlon model for p)

AND (p Is understood as "complex™)
! THEN (define solution model fcr p)

? : Figure 1. A production sy.tem representation of the design
schema control processes.

51

DESIGN SCHEMA RULES: SOLUTION RETRIEVAL PROCESS
DESIGN SCHEMA RULE 6:

IF (solution mode!l for p exists)
THEN (search memory for potential solutions which
match critical features of solution model

for p)
DESIGN SCHEMA RULE 7:

IF (potentlal solution s to problem p Is found)
THEN (evaluate applicablility of s)

DESIGN SCHEMA RULE 8:

IF (potential solution s to problem p is highly
applicable)

THEN (assert that p Is solved)
AND (delete p as current subproblem)

DESIGN SCHEMA RULE 9:

IF {(potential solution s to problem p ls moderately
applicable)

THEN (add to agenda new subproblem p'! created from
solution mode! for p augmented by s)
AND (make p'! current subproblem)

DESIGN SCHEMA RULE 10:

IF (potential solution s Is weakly applicable)
THEN (reject potential solutlion s)

DESIGN SCHEMA RULES: REFINE SOLUTION MODEL DECOMPOSITION

DESIGN SCHEMA RULE 11:

IF (no pofential solution to problem p Is found)
THEN (expand solutlion model for p into well-~deflned
subproblems using understanding and evaluation
processes as needed)
AND (add each new subproblem generated t
to agenda)

Figure 1. (Continucd)

PAGE-‘KEYED INDEXiING SYSTEM

BACKGROUND. A book publisher requires a system to produce a page-keyed
Index. Thls system will accept as Input the source text of a book and produce
as output a list of specifled index terms and the page numbers on which each
Index term appears. This system Is to operate in a batch mode. '

DESIGN TASK. You are to design a system to produce a page-keyed Index.
The source file for each book to be Indexed is an ASCII file residing on disk.
Page numbers will be Indicated on a line In the form /%NNNN, where /¥ are
marker characters used to Identify the occurrence of page numbers and NNNN Is
the page number.

The page number wlll| appear after a block of text that comprises the body
of the page. Normally, a page contains enough Information to fili an 8 1/2 x
11 Inch page. Words are del imited by the fol lowing characters: space, perlod,
comma, semi-colon, colon, carriage-return, questlon mark, quote, double quote,
: exclamation point, and |ine-feed. Words at the end of a |Ine may be
! hyphenated and continued on the following |Ine, but words will not be
continued across page boundaries,

A term flle, containing a |ist of terms to be Indexed, will be read from
! a card reader. The term file contains one term per |ine, where a term Is 1 to
5 words flong.

The system should read the source file and term file and find all
occurrences of each term to be Indexed. The output should contaln the index
terms |lsted alphabetically with the page numbers following each term in
alphabetical order.

Figure 2. The text of the page-keyed indexer problem.

53

_
|
A
.

25125 v) *ofaig ueg
433u3) G4y lauuossad Kaey
60f apo)

Jausty 1430y *Jq

€125 14 ‘opuetrdd
£agg 243 Jo *adag
(234%1)
2nom uolcnieal § syshlevy Suyuredy
ApcT *3 pALITY "uq

05232 22 ‘ucyfuiysen

Ki5€~d0

suoyLeJI2d) (%ALY JC JOTU) JO 321330
HITWS ' 343Ge; T Jg

€052% 14 ‘mrosesuad 3y

= 3:9)
uTe4l fue uctieanpl feaey jo JoLp
Furluus Lidon uy

£0508 15 ‘elonusung

Tinye

T5T

G ud ‘ueyTuteid 4 aalcoy

Kacy

086€6 vD *Kasdquoy
TO0UIg 33enpeaSicod eacy
A4S apop

waImJedag Yourdgay suoyjeaadp

Adood Kaey cuq 1

25126 vo ‘08.1q usg
J33Ua) Q%Y 1ouucsaLd Lavy
43213)0 Juypuenno)

NS *uonded *4 proucy uteidey)

usf0e a0 ‘uoyugysc;
{5t 1=dC)

youwsg SIIPNIS 7 JuALIOLIAIQ \(Oucasay
SUOTIeIDdD TeARY JO JOJup auj JO ao1jiC |

L0116 v "mubpesug

399458 43040 1sed Ll

AVYS3 WU, LY
syvotoyohksy ¢

ligee wA *uoiPurtay
YydJcasoy Teac, Jo Lo1)30
(65 p0D)

1 swesfoud yadeasay Puiuical y [auuccald q

[

o
Ll

L1222 wA ‘uozSuyptay
3324335 Lougnd *p yul
Ly 30

yoJeasay Inaey Jo 231330 1

S0609 11 ‘ofeoty)

A39C NJKTD T8 506

A2TF 40 YouLsT HilU
qetdotoycheyg I

01220 yu ‘uoiysoy

2004, daing)4

U UoTiday fatt YbL

DI IO Wduay HiO
P18 SN ETE7 SEX] 1

06:uZ g ‘uoilurner
i2ve NEo

Kd0jea0qe] o 7G4 [
o1y YuTjuste.e))

61 ‘€ dsquuidin, G aLizoe

25126 v *o%ayg ueg
433493 QW tauuossad Laey
40322410 1edTUudal

25126 ¥) ‘oTayg ueg
423U2) Q74 Tauuosaay KAaey

NO2d4 3p) *hieugyy

25126 v¥d ‘UD3I0 uyS

S3LM3D Q% TN0SUAd RAVE

(02 9p0) *3313J0 UOLAOJUl [23TLYSi
UITTIR °[*i pol

nioee dil tersayiog

49U [edTpa,) TuARy [rruotien
tn 9p0)

PURPULIO) CRY TL2TpD, Teaen

€2426 ¥) ‘ofayq ues

2215% x03 ‘0 *d

433U3) yoJdessey Yiieal 1eacy
Kaeaqy

G516 VD ‘upeuouo)
tooyoy snotqiyduwy (At *goq
4321330 quypuzuuo)

25126 Vo ‘efag ug
423Ud) (Wl YMuosadg Lacy
an2nuo) eI aa

109€2 VA ‘suiy naodeyy,

03 #30phag pue BurprIngdyys suay jJodsay

(OL=i:AD) UOSUIA Tur3 ¢ip
4201139 urputino) dat1aadTold
HSA *UTIARY T paEqDTd 144D

Gliue 53 ueatugusay,

liLde
1215101
B3 PR TIRNTA

wLy TaruToar
Tututrag ut: uoiq:oun

Ane:}

1 al'ed

#5uet

($L) siyduo,; uogiess
ButuIRJL TesTLysS]
da5h P e, *im

23128 ¥3 *3%
..oouuuu....»or.an»u
u

R - 1 ¥ he -4 £S379 heg
s
UIBTIdES ‘3 WITditg *LT

allz: eyurnys
au; jusnd

Ry

0321 us; & =JLuc;3T
s MRS CRETS

1
w ol

L)
LT

teeqcs
WEHg TINIF4l; § 18CAT
Payias tg e2Id vl
[41 I%
L3 MT drjeedtla Ly

PR —— . N S Y

0L€02 37 “NOLONINSYM

SEEID INTHYL ‘SN oW

(L=0¥ 3C0I) EISTATY IT4IINIINS
LISCHavIs 1y -ye

4222 YA "uoifurray

t33 Asutng cun gof
CEFLETERER) Jo 191330
Ll 0po)

<333 sdioy
u::u:sosn.....n.anw_. uu«umun

22 YA t0a1yuEng

2 WS u03rongg
(L203) 4CsyALY LTy 3
S hAL veyiTYe)

soutany

n af2y

- o . . b - o~ - =

2££02.00 ‘04v Suriroy

4SOy

3840309410 830Ut og EX RG]
avsn *efey *daout *y yowp

tLE9L X1 ‘4dy paedds
2E do3s KOLL/MLIDL Gulf &

022T9 2V ‘edv sweyrrin

(L0)WHAV

4032a41Q [vofuyday
Acandod Kqawg; - ag 1

Gnlel XL *gds vdpopavy
MdADIA /24y *1iduLag yoausgog
UOTSTATQ uaLINSEH! Lu2 Godagay 1

2EEL2 X0 U4y furqoy

Suiv

3e4udaay Sooust. o

(VRPN]
P2ZPPUH wAnTAduLYy g 1

Uce. L ALty snocay
(O€39) Taiidy it
WInlly *y Tan

’ thAod ATy

0251 *t Jaquoidag doartv/ive

EE€2z waA ‘erapuensty

INUIAY LLHOLUIS TS LLUS
AINITISY] WoarOTe Lnay *uen
Fary ydasop *ag

A oav

$5298 LI ‘uostsaey ugmlusg o4
1214052 oo

Uot2iIeILTURY- SO

oo L.
L:¢22 W) ‘e

L sEmns
L kY ¥ 1PN

TPt 113

[R EFRY
BINIFISL] Goavig-yg
(TP 2R CTLIN

204

3,

LT

Kao, 1
Te Lot
7w e
[T EEL [
% <G} o S-dCebe l_ . - .-
408457 teL 1 .
fony
[U R - drelr

£1261 vd ‘4%angernyy
Aypsaaariyy vortay atPausey
APoro1ohsg Jo quatnandag
MCY eIl ug

CIvn3

£92 S13 voruon
pOjIRag

pPr0y sL01S2utaAT]
#$10;] dueisiutayy
Kieugyy sa24; satacu)

L30m3 In *u3yd

“L3 31VIS Cus Lo

0t 31I0S *vZyld AlIsyaninn
Sl L¥oIn

#IS43QL0d 4TI3IA D "Ha

Sivb ¥d ‘Pdojuuag

Ka1sa0A1L) paojuzg

NG Jandt o) Jo uaLtavdig
ueusyseg 2angj tug

niiad ¥ '011Y orey
rrog 840803 {Igf
¥ 0%y Ol-d 243X
w0l 'S ugop Cag

0riZ5 U7 "1y enol

r3l XCl Q0 *d

swafoud Pusisaer #¥a1102 utoyaaLy
YBULALY V4AG0Y * a7

L1285 1) *1rer e

12 UeS v etUL0STITe) 0 A31sudatup
$IJUATIS uotLeL0)u] dof Eingpisul
S2110) uyIuuay *ug

1ISI3ATUY
wiirdx

thotay

140y uoy

SOENG ¥vD ‘puojuesg

£3184347W) paojucas

3uatdg L4anduwoy jo waIkyavdag
44v8 uoaay Jy¢

30202 ¢ ‘uoauag

Aded Ayysanayun

J3auaq Jo A3teaaatun
£Botoyohsy jo quaLgardag
3By vrogaqug cug

Cuvons
332 2uD wSpraquy)
P20y dadnei) gy

Itun APoroudhsg porrdy
TI2N0) Yoarassy teoypay
Katapprj uLty * g

10213 11 ‘euequp
Q¥] YoJedsay 1eUOTIRONPI [oiei-aonduo)
STOUITII 30 Aapsunatyy

ASUAY ty oy

SYIRMISNY '00Y2 1DV Cauaquiy
S921J30 #4ed [(aqdui)

(391330 Kway) asuajog jo *3day
ATUN Yadedsas TudTlofoydhsd |

davsi3

YL uAd Kdjusadp
LEALELR NI ¥8 CFETS T
A2orojuhed jo QUL A div)
IIBUWY uiop * ug

02ty U ‘uleviunyy

SATI] Kuaut

A2WUD) YIJLISLY F,UuPITYT pyot
Butpeay Jo Ains: sy Jdoy PN
‘geud g suwoyy futSaspuy
EL2SL v TnDungiyy

A3rsaaATY) woty v [SN PTE)Y
K¥OTOoNZASE JO it dog
LRI AT BRIV R * Ly

AR0) uopy

0861 *E daquoideg

Joonlvsivy

0§502 a0 ‘uoPuiysen
YOTITPUNOS SdustIC Truotyen
828830044 aATyTUO) § KJowiy
40333430 *Puno) °q ydasor i

20202 20 ‘uorPuyysp

13 *dag pumihara Coy
uolINIngy jo 221330 ‘v °f
HO4EITA jurayg *aqg

wicee yA ‘etspuuxaty

AT 1Y 0 LLg

UOTINIIIRUL UTTUOSYS YIS

S80TA405 K40BTAPY pue yd4russy FE TR
40129410 L2aB0ay

ORTEUIC 92TIrE *)f *ug

Stnoe o3 ‘uoiTuiycen

i 399450 3 vwol

IMBeul| Touuosaad Jo aStjgn
33U ¥4 [SuUuUORUad

VGSO¢ ¢ ‘ucilutusep

Uorpunog 3dusYL3 [eucyiey
YourisSoyg fur

‘A3Q UOYIRIND] soustdn

4CUTG,| 4 aaruy cag

80202 34 ‘umPuyqacy

KX 19303 16 guet

-Ouamgﬂw JOo ainyrqug 1ruog-, .
P dnyrdy tug

Bueo2 o ‘uoiPupysep

Kl 352053 Gl w2t

:Oquﬂga Jo @INF1sUl ~Nr.b~uc;
shs:) uunp *ag

05502 X "uollutysey
uol3epuUNog 3cuITS; Teuntiey
At

uosdyy] yd cop vy

gucoe
. a4, Wt
UOTWINPY JO 4050 Yy,
uawlotas~ pue Tutua2:q
rradru) Lweses cae

REC AR PR

[{ v

voE

<3

ML 8D CAILG 3L
WIILYINS3 T¥32L3a, ul

Mudaq Jo Lusyeitel
Loz

Fue 2ututcal 403

KJi30% SIIIT.cd

Kauaty

Jajua) ucysel.

Yavest ol ¥ “0%ta3emy
e 1L °35 woTac, L3
. 16219 1 ‘uliedueyw) 08208 0 ‘gdv Luno) kSotouydag 3o anyasu] ~c-sn~n=o_...u_ou“ TIUL ‘UL f Haulid: nm
SICUITII Jo A3ysJ9atun ®020E %oy °0°d fursawiPuz JuamaBruey 2 Teysisnzug L
{ *?e1e uoyieanp3 012 SINOY °3I§-°0) €O7INEUOIYSY Jsudoy tatusg cug
3 A%0toyaksd teuor*anpy Jo juarisedag se1dnog-1 1ouuag .
JurTAd] teeyoTy tug peAr Y uosyIE cug €550 it *ramysy e ’
: Ka3S42Aa%u) TTAUL0) .
€325t ¥4 *1%anesaand S01C6 vn *aness 191 svo9e L12 (LT LA LTI B |
i 4Pm3citvd Jo £ajsdaatug uolBuyysey jo Ky1sadayun HOO ([0 *q ufALLy cuy
FLYTE LS IS {TRLEY | Aforogohsy Jo *idx
prafsol umty tug um el cag gy €1251 ¥d ‘1oMnGELLld
! 1338135 89K, 6 6550
i £1251 vd *'i%saa68110d Ziudn I ‘urytutuay) HOERQSLLII 3¢ ALISdaaiin 23Y3538 1314y 12
. KA1€a3A1U0 uOTTE: dTTaude) fyti xo g °d v 1)
: k201042454 39 usaedag «IBYPTERN DUV 129U U2, ¥ISYID 3oy *¥a ' A
uTXaeY 1Y Cag 1 *M *plemussay spuarty } oZe
' w20U6 ¥ *S110%uy su eTUICiITES p]
2l206 ¥ *s$91€q53 sapaap soyeg t126t 30 *Ademsy eTuL03TIe) Jo ATsaastun Ki2ogoiss -3 |
13700 kT L1{} dJene1xy jo £tsdaatun A20101945d Jo jusLiandNg AT ARt T I |
Ja%c4; urqar, ¢] APotonchsd jo quingaed.y UTHTAST1ID PaLAR] ‘g °4q : A
urugjol oy ssucr ca | ance ‘
‘a2;:taque) 63z 9I1 v2vuyd '
PUe 1Aty TE L90n, In ‘uauy PIQIY ‘uouoLp3 *ou;]
K2010ic8s; jo juatasedag . 3.6 xog e1J3q1V JC K11543a7u 831 3 “
Ai1savatuy pazaaey "Jur ‘qeary Adoroydisd Jo udunueda
wlitsa wudsag tug uoAsnAY ‘i upIsry tug g URLESTAY Eutle c4g w
fhtat dd idop m 90nCe ¥2 °=ajua; ciuey §E120 ¥.1 *oRptaque) uoyjerocEs; tecTforc: : .
ELRETF AR A £ B VLG utey; Lull PEEFERINTIICE LY SSrS $aC3m2.] s L Y l
YOIYRELNTY rE0IS *d FedITY uorjeaodao; puLy ooy Uewmay 3 q30C 7] 310) '
4921330 veailouy YIoY-£246,) A3Taupasg * 1y t UIERTIIPIA] ‘g uiop cay 1
UeIBLIAIIN v tauusy tug | .
9uh0G vI ‘edtuo rqug (AT B MRk g | 1
12.51 7y ‘uossny . KELEE NN { SNVHTY INI S3LVIIGISY C4D45I0u C3iUddY
euozT e jo A1tSa3Atun uoyqLaodao) pury oy SUP L3104 °Q LEE G [y
A% teicfsqd Jo W sliaediqg UoH-sahu;| edrqaeg *ag l)
EEELIS NS £14 B L I | . 102 51 ‘uciButsc !
£l ¥ dwaing RemyZ vy 3Sur 3804 (lin |
) *Japinog uaoLs Jo AqTSaaatun cue o310 _
ofeisol Kytcaaatup KBotogohed Jo yruiandt, *uePL) SIUNO0Si,; I423E vy ¢ I
A2030.:8 ILHLILES G Sutam g prod g tug t UELSTUTd *7 UTeR3 Cu4y i
"ieuty E3ten cug g
fieal w0 CHndliilg 05362 Mt rliTews g
L) 'eusing LEY: PR R S 110y Asanniuoy :
CEREN A3ts49atun ROUMUCILId 50 LLiCisAlan Kiolmiihed Jo *qdg H
K2c1eieisd go *qduy 4 Y R0 S RETIE T T Y [;
MR T L uenens Tug 1 G2 "o L ‘Ll i\ B
1
tron uoy '
SACT uey AL nel .
1 a%yq 051 *0 A qeide)
UeSI ‘E diquinday [PV T .
)
I e e . —ee e e e T T T T T e T

- —— -

SurC6 YO °*2d1uoy wueg

SRZ uysy polt

uotyesodion pury ayL
*323C SIWATY: uojietuojul
2408 L ustaN "4

L3856 93 CSTIE Cayeon
YA 129
COrICdId308E
Nehd32 G

‘spretecunry
12y 2arty "3 4L
Jo & —nuw:_s
i o;o: 3 0vol
fontang cag

SELEY Vi *eEpTagLe)
Key ueldls *11ey vosau

L21830ATL) fparadey
LOT1eINET ;O 1001d3 ajtnyean

FEILERIES SR GOV IR K]

el € “sytedeuny

ST UIXYY ¢2n

154 .wu«. LUES)

*dp ‘uegTaey 'S opdetIIn CJg

boduy I ‘uojsuzal
KIS JaAT%, wapisaniyd
L3cioysksg 30 *qdg
poorszun *f uolus] *JC

N9€1E 2 *STYLE pu?1p00y
oAy TEYaes 1126
*dul *s3tuciifadiad

Loc:r.._ o oca

L1236 v3 43z ofuopny
“IAY €573 '3 Gnll

eqQe) A701cuudal (RactAEYad
CTLI0I3T14) "o Jo catun
aL10l setinay *4g

e uey

665Ul AN *SIyPray uwonaox

812 nou *0°d

497U) yosrasoy uosien ‘f sewoyl 1yl
fewoyl uwjor *Jug

t0u19 11 *euequn

STOUTTTL Jo Aq¥sa0atup

Kaoreaoqe yoseasay Jutavouliug g6
Kaoireaogey

Youeacay uotiednpy Lasey arindwoy

ENONSLL Tunq 1y *ug

SUERG VD ‘UdudnvLS
KLISUSATED ddudiviy
S3IN3i2s WIduy Jl
NI SITUNLS IVILLViEHLIL o4 ALNL[LSN]
$3ddNiS AB[di¥d "HE

Beley Vi “aaivanyd
HOL W LS
44y Lo
HILE Laduly i1y

0CS9d 1D “uaar may
gaTyeas ek iy xoy
LS £:FEY SIANES FFY
Korogaksg o *qda
HaaQuauly F40404 *ag

SLENs ¥ ‘taojurgg
AyySaoayrun projuely
uo1?aNpy Jo oo

nouy paeyosty *ag

£0650 fi. *AVINSUN LY Sof
AqTsdarty) Sa.qng

SOUITIG Jandwc) 3O uatiacdg
[3d3qey cag

€1261 ¥ ‘ultangsaarg

Aavd Ao luejou
ABoloiohs 30 quatyad.y
L& CECYS AERILE RICIENT TN
d035 jaad
PR & I

P S

91008 AN *440% mp

NUIAY PATUL 50%

T13UN0) YoJeasay aDUATDT TMISOS
poJSBYS 4 dfuuo] *uc §
YoJedsdy 3AT3TUTO) UO IINITLLL)

nig2z w4 .<~mn=<sma¢
*LS LOLDLINSTE i Uit
0dy. ik
dNOYD ADON0MD3L TVLOILONYLINT
134138 °F 14360 ‘ua

g2feL Xt tuoyurp

aR5TT0) uOyyuny
$d11eusyI g JO JuUILFacdng
PIaJusoUdy uly *aC

U2gLte II HOIVJ.VHD
SIONITII 30 ALISH3AI

A9GTGHIACd 40 *1d43a

U3QI3N:HoS HILWY "uQ

£6026 V) ‘=1i0r N

oFa1Q ues ‘eruaojile) JO *atup
Buyssa004g uOTIEMIOJU ulun 4O} 43LaE)
TNy ETALY *ag

GL6L0 1 *TIW Kedany
SNU3AY UNQUNOy, L9
sajdoinicq) 1rog
Jdoquaon *z suay g

ueLns Y3 *Aioandey
-«:._o.::u FLIFS RNV I
uaLIEda] sorsliug o/
E H IO

Jbal podd tag

Syeuh ¥ ‘hulivd

ANL LS L3151y ?.n

HD1S3d 13L1SAC * _u...._\u..
Kl b id SO0 2 T TR AN G4

“d41

CUEO: WD CHLETLI
40100 au MET CaEARA
ADQN2NGACA L " idE)

LotTd 92134 5l

L2222 %A ‘e uhnru.u
133423 om0 iz N

Katsdasatsn idea] puivzace
veEined oY Al g

1 LT
£BoT0WYasL JO Suraasl
iy

el oyt Twl
40014 434794 **en?
€atacyesoqry L9

58€522 Xc3 *L%d
e3ur
Kao2acge

uaddcagLayit

EYA Y

SolUSIIT T

o
-
~
..
M
ae
T
L3
g
-
-
')

- et —— I = o e e = e

R _ . P -

. e~ - 2 —

